Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model
نویسندگان
چکیده
This paper presents a method of learning reconfigurable hierarchical And-Or models to integrate context and occlusion for car detection. The And-Or model represents the regularities of car-to-car context and occlusion patterns at three levels: (i) layouts of spatially-coupled N cars, (ii) single cars with different viewpoint-occlusion configurations, and (iii) a small number of parts. The learning process consists of two stages. We first learn the structure of the And-Or model with three components: (a) mining N-car contextual patterns based on layouts of annotated single car bounding boxes, (b) mining the occlusion configurations based on the overlapping statistics between single cars, and (c) learning visible parts based on car 3D CAD simulation or heuristically mining latent car parts. The And-Or model is organized into a directed and acyclic graph which leads to the Dynamic Programming algorithm in inference. In the second stage, we jointly train the model parameters (for appearance, deformation and bias) using Weak-Label Structural SVM. In experiments, we test our model on four car datasets: the KITTI dataset [11], the street parking dataset [19], the PASCAL VOC2007 car dataset [7], and a self-collected parking lot dataset. We compare with state-of-the-art variants of deformable part-based models and other methods. Our model obtains significant improvement consistently on the four datasets.
منابع مشابه
Coupling-and-decoupling: A hierarchical model for occlusion-free object detection
Handling occlusion is a very challenging problem in object detection. This paper presents a method of learning a hierarchical model for X-to-X occlusion-free object detection (e.g., car-to-car and person-toperson occlusions in our experiments). The proposed method is motivated by an intuitive coupling-anddecoupling strategy. In the learning stage, the pair of occluding X's (e.g., car pairs or p...
متن کاملCoupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detection
Handling occlusions in object detection is a long-standing problem. This paper addresses the problem of X-to-X-occlusion-free object detection (e.g. car-to-car occlusions in our experiment) by utilizing an intuitive coupling-and-decoupling strategy. In the “coupling” stage, we model the pair of occluding X’s (e.g. car pairs) directly to account for the statistically strong co-occurrence (i.e. c...
متن کاملLearning And-Or Models to Represent Context and Occlusion for Car Detection and Viewpoint Estimation
This paper presents a method for learning an And-Or model to represent context and occlusion for car detection and viewpoint estimation. The learned And-Or model represents car-to-car context and occlusion configurations at three levels: (i) spatially-aligned cars, (ii) single car under different occlusion configurations, and (iii) a small number of parts. The And-Or model embeds a grammar for ...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کامل